
02/11/2011 Project 3 _ MDDN311 Blog

1/15

Projec ̀ 3
Posted on November 1, 2011 b. stecman

Video: Project 3 Video (5MB)

Source: MDDN311_PJ3_source (200KB)

Concept

Right from the start of this project, I kne ̀ I Zanted to do something Zith robots.

02/11/2011 Project 3 _ MDDN311 Blog

2/15

My initial inspiration was the . Claptrap´ comic robot character from the 2009 video game Borderlands.
Lacking any ideas for robot design when I drew my concepts, I used the basic design of a Claptrap as a place
holder for a future robot design. As it turned out, I ended up drawing my final robot design on the same piece
of paper (arm, top left-ish).

02/11/2011 Project 3 _ MDDN311 Blog

3/15

First Experiment

I had considered a whack-a-mole type scenario where a robot just plays whack-a-mole with a machine that
pops out light bulbs, so I started with that and looked into generating shatters.

I quickly decided that making effects wasn.t a great place to start as that was something I would be best to
finish the project with, so I abandoned modelling completely and got to work on the function and
programming side of things.

Robot Arm

02/11/2011 Project 3 _ MDDN311 Blog

4/15

I wanted to make life as easy as I could in the project, so right from the start I made the interface I had to
program with extremely simple – getting as much automation as I could before going to code. First I
experimented with a bone hierarchy + IK following a point.

In the above image I had parented the cube to an IK handle. This worked ok, but wasn.t ideal as I wanted the
cube to be a target point and the arm to aim at the cube. In this case the arm would stretch out if the cube
ventured too far away. This setup also had accuracy and inverting problems as the IK handle was fixed on one
side of the cube.

After putting some geometry around the bone structure and adding limits to each bone (to give some robo-
realism), I tried out various types of constraints. Once I had found the right type of constraint – aim in this

02/11/2011 Project 3 _ MDDN311 Blog

5/15

case . I set up the blocked-up robot arm to follow a locator. This process was quite involved as I had trouble
with weird rotations when constraining to only one axis (Y).

I solved this problem by using expression rather than constraint driven rotation for the robot arm:

02/11/2011 Project 3 _ MDDN311 Blog

6/15

The Robot.s Nemesis(s)

Next I moved onto the target for the robot (I actually started and finished the basic targets before I had solved
the aiming robot aiming problems, but that¶s irrelevant). I referenced the arm and a newly made GI-Joe-block
into a new scene and worked on the spawning algorithm for the invaders. I¶m not sure at exactly what point my
idea changed from lightbulbs and whack-a-mole to GI Joe plastic soldiers, but it did.

A formation of military precision had crossed my mind, but I thought that would be too boring, so I started
with (pseudo-)uniform distribution in a semi-circle.

02/11/2011 Project 3 _ MDDN311 Blog

7/15

I tried lines of targets in a semi-circle but it didn.t leave much room for variation as all targets in a line would
have to move at the same rate to avoid collisions, or take on some other random behaviour.

Next I added the movement of the enemies, trying to make them shuffle like a plastic soldier might if they were
being moved by hand. At this point the gun was static.

Playblast video of the above image: Target Movement Playblast (3.8MB).

In the video (linked just above), the GIs had a random wait cycle but all moved at the same rate. After this I
added a variation in speed so that some targets would always be fast, and some would always be slow.

Robot Brain

To complete the scripted side of this project I next had to program the robot arm to aim and “shoot” at
targets. I added targeting for the robot:

02/11/2011 Project 3 _ MDDN311 Blog

8/15

And to simplif. again, I used rigid bod\ simulation in the die function of the GIs:

02/11/2011 Project 3 _ MDDN311 Blog

9/15

Using rigid body simulations meant I could tell an object to die and immediately delete the reference to it – it
would do it.s own thing from that point. After the script ran, each GI had two objects that swapped visibility at
the time of death: the original animated version and a physics version. One problem I ran into that I
didn.t get time to revisit was caching/ke yframe-converting the resulting transforms from the
dying simulation. In the final video the targets jump around after being hit because the simulation (with an
initial rotation force set on the dying objects) starts computing from frame one rather than the frame where a
target dies. When the script is running however, the dying simulations look perfect.

Next I added recoil when the robot fired. This was just a simple operation of relatively moving the rig¶s IK
handle whenever the robot fired, and making the robot IK want to return to it¶s default position every frame it
wasn¶t firing. It took a little bit to get the recoil and recovery rates right:

02/11/2011 Project 3 _ MDDN311 Blog

10/15

Models

Lastly I got round to replacing the blocks with actual models, though I didn.t have a huge amount of time left!

02/11/2011 Project 3 _ MDDN311 Blog

11/15

02/11/2011 Project 3 _ MDDN311 Blog

12/15

02/11/2011 Project 3 _ MDDN311 Blog

13/15

02/11/2011 Project 3 _ MDDN311 Blog

14/15

I would.ve really liked to make a decent looking plastic soldier, but this fella gets the job done ok.

Random end note for this section – you can see the slide cycling in the video when the gun fires. This action
would have been much better with cartridge ejection, but I¶ll get to that next. Rather than animating the whole
thing over and over in code, The gun object has a custom float (range 0-1) property called “fireCycle”. This
property is the driver in a driven key that controls the slide and hammer position, and is keyframed in the
script to get the animation.

Playblast of firecyc property 0. to 1. over 300 frames: firecyc_demo (1.2MB)

What was left out

I began working on two things that ended up getting left out because of time and bugs: particle muzzle flash
and cartridge ejection from the gun. I almost had cartridge ejection nailed, but it unexpected caused a massive
bug that I couldn¶t trace and meant the code wouldn¶t run at all unless I deleted duplicates of the cartridge
reference (probably a duplicate name issue, but I didn¶t have time to debug it and it was affected by the same
physics starting at frame zero problem I had with the targets dying). The cartridge ejection was completely
physics based, and it looke d prett. darn awesome dur ing generation the one and onl\ time I
managed to get it to run. You can see the cartridge reference model hiding inside the gun here:

02/11/2011 Project 3 _ MDDN311 Blog

15/15

I started experimenting with particles for muzzle flash, but ran out of time as it caused Maya to crash
frequently. I didn.t get any screenshots of this, but it was pretty basic – just a directional particle emitter in
the end of the barrel which would have its generation rate hooked into the firecyc property that controls the
slide and hammer action.

Last notes

I really enjoyed this project and had a good bit of fun. While it wasn¶t central to this project, I do wish I had
spent more time on the aesthetic and render quality. The models weren¶t great (though they were functional),
and the render quality really suffered because of time (had to significantly lower the render settings). In the
near future I intend to add the missing muzzle flash and cartridge ejection, spice up the models a bit more,
render the whole thing out nicely (with more enemies and shots), and compose it into a nice portfolio piece.

